Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

نویسندگان

  • A. Ghafouri
  • N. Pourmahmoud
  • I. Mirzaee
چکیده

Abstract—In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60 and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder

In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coord...

متن کامل

Effect of nanoparticle shape on natural convection heat transfer in a square cavity with partitions using water-SiO2 nanofluid

In this paper a numerical investigation is performed to study the effects of different nanofluids on convective heat transfer enhancement in a partitioned square cavity subject to different shapes of nanoparticle using water-SiO2 nanofluid. This study has been carried out to analyze the effects of SiO2 nanoparticle, its volumetric fraction between 2 and 4%, and nanoparticle shape (i.e. blades, ...

متن کامل

Aluminum Oxide Nanofluid Energy Transfer

Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids.This article aims to investigate the overall and convection heat transfer coefficient and Nusselt number of Al2O3-water nanofluid flowing in a horizontal double pipe heat exchanger under turbulent flow (...

متن کامل

Enhancement in energy and exergy efficiency of a solar receiver using suspended alumina nanparticles (nanofluid) as heat transfer fluid

An experimental and theoretical energy and exergy analysis was conducted for a cylindrical cavity receiver employed in a parabolic dish collector. Based on simultaneous energy and exergy analysis, the receiver average wall temperature and overall heat transfer coefficient were determined. A simplified Nusselt number for Heat Transfer Fluid (HTF) through the receiver as a function of Reynolds an...

متن کامل

Numerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)

The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015